ACEA EUROPEAN OIL SEQUENCES

2004

SERVICE FILL OILS FOR
GASOLINE ENGINES
LIGHT DUTY DIESEL ENGINES
ENGINES WITH AFTER TREATMENT DEVICES and
HEAVY DUTY DIESEL ENGINES

Laboratory tests for gasoline and light duty diesel engine oils,
Engine tests for gasoline and light duty diesel engine oils,
Laboratory tests for engine with after treatment devices,
Engine tests for engine with after treatment devices.
Laboratory tests for heavy duty diesel engine oils,
Engine tests for heavy duty diesel engine oils,

ACEA
Rue du Noyer 211
B-1000 Bruxelles
Tel (32 2) 732 55 50
Fax (32 2) 738 73 10
(32 2) 738 73 11
www.ACEA.be
TVA BE 444 072 631
SGB 210-0069404-04
This document details the ACEA 2004 European Oil Sequences for Service-fill Oils for Gasoline engines, for Light Duty Diesel engines, for Gasoline & Diesel engines with after treatment devices and for Heavy Duty Diesel engines. **These sequences define the minimum quality level of a product for presentation to ACEA members.** Performance parameters other than those covered by the tests shown or more stringent limits may be indicated by individual member companies.

These sequences will replace the ACEA 2002 sequences as a means of defining engine lubricant quality from 25th October 2004.

CONDITIONS FOR USE OF PERFORMANCE CLAIMS AGAINST THE ACEA OIL SEQUENCES

ACEA requires that any claims for Oil performance to meet these sequences must be based on credible data and controlled tests in accredited test laboratories.

All engine performance testing used to support a claim of compliance with these ACEA sequences must be generated according to the European Engine Lubricants Quality Management System (EELQMS). This system, which is described in the ATIEL Code of Practice, addresses product development testing and product performance documentation, and involves the registration of all candidate and reference oil testing and defines the compliance process. Compliance with the ATIEL Code of Practice is mandatory for any claim to meet the requirements of 2004 issue of these ACEA sequences.

<table>
<thead>
<tr>
<th>Issue year*</th>
<th>First allowable use</th>
<th>New claims by</th>
<th>Withdrawn</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>1st September 1999</td>
<td>1st February 2003</td>
<td>1st February 2004</td>
</tr>
<tr>
<td>2004</td>
<td>1st November 2004</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Issue year of full document

First allowable use means that claims cannot be made against the specification before the date indicated.

New claims by means that from this date all claims for new oil formulations must be according to the latest ACEA release. (For example until 1st November 2005, oil marketers can claim engine oils meeting the ACEA 2002 release even though the 2004 release is active. After 1st November 2005, any new oil claims must be according to the ACEA 2004 sequences.)

Withdrawn means that no claims can be made against the issue after the date indicated.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td></td>
</tr>
</tbody>
</table>

* Extra six months allowed to give reasonable life of specification

1 The ATIEL Code of Practice is the sole property of ATIEL and is available from ATIEL (Association Technique de l’Industrie Européenne des Lubrifiants), Boulevard du Souverain 165, B-1160 Brussels, Belgium.
The marketer of an oil claiming to meet ACEA performance requirements is responsible for all aspects of product liability.

Where limits are shown relative to a reference oil, then these must be compared to the last valid Reference Result on that test stand prior to the candidate and using the same hardware. Further details will be in the ATIEL Code of Practice.

Where claims are made that Oil performance meets the requirements of the ACEA sequences (e.g. product literature, packaging, labels) they must specify the ACEA Class and Category (see Nomenclature & ACEA Process for definitions).

The categories A2 and B2 are not included in this edition of the ACEA European Oil Sequences because they are unsuitable for some of the current engines and will be unsuitable for many future engines. Misuse may cause engine damage. However, the use of A2/B2 oils for older engines (where owner's or workshop’s literature recommends this use) is still appropriate and can be done according to the categories A2-96 Issue 3 and B2-98-Issue 2.

REPLACEMENT of CCMC sequences

The chart below shows the evolution of the engine oil specifications commonly developed by the European Automobile manufacturers. CCMC (Comité des Constructeurs du Marché Commun) was the forerunner organisation to ACEA.

In January 1996 the CCMC European Oil Sequences became obsolete and were replaced by the ACEA European Oil Sequences. This is true for light duty engine oils as well as heavy duty engine oils. CCMC European Oil Sequences are not supported any more by ACEA.

With the 2004 release of the ACEA European Oil Sequences the A and B categories have been combined to the respective A/B categories. At the same time, a new set of categories has been introduced with the intention to create specifications for engine oils being suitable for the latest and future aftertreatment systems for Gasoline and Diesel engines. These categories are designated as Cx-categories.

For Heavy Duty Diesel engines, the CCMC Dx categories were replaced by the ACEA Ex categories as of 1 January 1996. The CCMC Dx categories then became obsolete and are not longer supported by ACEA.

For Gasoline and Light Duty Diesel engines, see below:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Replacement Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMC “Gx”- Categories</td>
<td>01.1996</td>
</tr>
<tr>
<td>CCMC “PDx”- Categories</td>
<td>1996/2004</td>
</tr>
<tr>
<td>Catalyst Compatible oils for Gasoline and Diesel engines with aftertreatment devices:</td>
<td>25.10.2004</td>
</tr>
<tr>
<td>ACEA “Ax”- Categories</td>
<td>1, 2, 3 or 4 or 5 depending of categories</td>
</tr>
<tr>
<td>ACEA “Bx”- Categories</td>
<td></td>
</tr>
<tr>
<td>ACEA Cx Categories</td>
<td></td>
</tr>
<tr>
<td>ACEA “Ax/Bx” Categories</td>
<td></td>
</tr>
</tbody>
</table>

X= 1, 2, 3 or 4 or 5 depending of categories
The ACEA 2004 European Oil Sequences for Service-fill Oils comprise 2 sets (classes) of sequences: one for Gasoline and Light Duty Diesel engines; and one for engines with after treatment devices. Within each of these sets there are categories which reflect different performance requirements - four (A1/B1, A3/B3, A3/B4 & A5/B5) for gasoline and light duty diesel engines; three (C1, C2, C3) for low SAPS oils and engines with after treatment devices. Typical applications for each sequence are described below for guidance only. Specific applications of each sequence are the responsibility of individual motor manufacturers for their own vehicles / engines.

The sequences define the minimum quality level of a product for self-certification to EELQMS and presentation to ACEA members. Performance parameters other than those covered by the tests shown or more stringent limits may be indicated by individual ACEA member companies.

NOMENCLATURE & ACEA PROCESS:

Each set of sequences is designated for consumer use by a 2 part code comprising a letter to define the CLASS (e.g. A), and a number to define the CATEGORY (e.g. A1).

In addition, for industry use, each sequence has a two-digit number to identify the YEAR of implementation of that severity level (e.g. A1 / B1-04).

Please note that from this 2004 release, the A and B categories have now been respectively combined. As an example, where previously we would have had separate A1-02 and B1-02 categories, we now have a combined A1/B1-04 category.

The CLASS indicates oil intended for a general type of engine - currently A / B = gasoline and light duty diesel engines; C = catalyst compatible oils for gasoline and diesel engines with after treatment devices. Other classes may be added in future if, for example, Natural Gas engines prove to require oil characteristics which cannot readily be incorporated into existing classes.

The CATEGORY indicates oils for different purposes or applications within that general class, related to some aspect or aspects of the performance level of the oil. Typical applications for each sequence are described below for guidance only. Specific applications of each sequence are the responsibility of the individual motor manufacturer for his own vehicles and engines. Oils within a category may also meet the requirements of another category, but some engines may only be satisfied by oils of one category within a class.

The YEAR numbers are intended only for industry use and indicate the year of implementation of that severity level for the particular category. A new year number will indicate, for example, that a new test, parameter or limit has been incorporated for the category to meet new / upgraded performance requirements whilst remaining compatible with existing applications. An update must always satisfy the applications of the previous issue. If this is not the case, then a new category is required.

An administrative ISSUE Number is added for industry use where it is necessary to update the technical requirements of a sequence without the intention to increase severity (e.g. when a CEC test engine is updated to the latest version whilst maintaining equivalent severity; or where a severity shift in the test requires modification of the specified limits.).
Where claims are made that Oil performance meets the requirements of the ACEA sequences (e.g. product literature, packaging, labels) they must specify the ACEA Class and Category (see Nomenclature & ACEA Process for definitions).

«Consumer Language»:

A/B : gasoline and diesel engine oils

A1/B1 Oil intended for use in gasoline and car + light van diesel engines specifically designed to be capable of using low friction low viscosity oils with a High temperature / High shear rate viscosity of 2.6 to 3.5 mPas.s. These oils may be unsuitable for use in some engines. Consult owner manual or handbook if in doubt.

A3/B3 Stable, stay-in-grade oil intended for use in high performance gasoline and car + light van diesel engines and/or for extended drain intervals where specified by the engine manufacturer, and/or for year-round use of low viscosity oils, and/or for severe operating conditions as defined by the engine manufacturer.

A3/B4 Stable, stay-in-grade oil intended for use in high performance gasoline and direct injection diesel engines, but also suitable for applications described under B3.

A5/B5 Stable, stay-in-grade oil intended for use at extended drain intervals in high performance gasoline and car + light van diesel engines designed to be capable of using low friction low viscosity oils with a High temperature / High shear rate viscosity of 2.9 to 3.5 mPa.s. These oils may be unsuitable for use in some engines. Consult owner manual or handbook if in doubt.

C : Catalyst compatibility oils

C1 Stable, stay-in-grade oil intended for use as catalyst compatible oil in vehicles with DPF and TWC in high performance car and light van diesel and gasoline engines requiring low friction, low viscosity, low SAPS oils with a HTHS higher than 2.9 mPa.s. These oils will increase the DPF and TWC life and maintain the vehicles fuel economy.

Warning: these oils have the lowest SAPS limits and may be unsuitable for use in some engines. Consult owner manual or handbook if in doubt.

C2 Stable, stay-in-grade oil intended for use as catalyst compatible oil in vehicles with DPF and TWC in high performance car and light van diesel and gasoline engines designed to be capable of using low friction, low viscosity oils with a HTHS higher than 2.9 mPa.s. These oils will increase the DPF and TWC life and maintain the vehicles fuel economy.

Warning: these oils may be unsuitable for use in some engines. Consult owner manual or handbook if in doubt.

C3 Stable, stay-in-grade oil intended for use as catalyst compatible oil in vehicles with DPF and TWC in high performance car and light van diesel and gasoline engines. These oils will increase the DPF and TWC duration.

Warning: these oils may be unsuitable for use in some engines. Consult owner manual or handbook if in doubt.

SAPS : Sulphated Ash, Phosphorus, Sulphur
DPF : Diesel Particulate Filter
TWC : Three way catalyst
HTHS : High temperature / High shear rate viscosity
E : Heavy Duty Diesel engine oils

E2 General purpose oil for naturally aspirated and turbocharged heavy duty diesel engines, medium to heavy duty cycles and mostly normal oil drain intervals.

E4 Stable, stay-in-grade oil providing excellent control of piston cleanliness, wear, soot handling and lubricant stability. It is recommended for highly rated diesel engines meeting Euro 1, Euro 2, Euro 3 and Euro 4 emission requirements and running under very severe conditions, e.g. significantly extended oil drain intervals according to the manufacturer’s recommendations. It is suitable for engines without particulate filters, and for some EGR engines and some engines fitted with SCR NOx reduction systems. However, recommendations may differ between engine manufacturers so Driver Manuals and/or Dealers shall be consulted if in doubt.

E6 Stable, stay-in-grade oil providing excellent control of piston cleanliness, wear, soot handling and lubricant stability. It is recommended for highly rated diesel engines meeting Euro 1, Euro 2, Euro 3 and Euro 4 emission requirements and running under very severe conditions, e.g. significantly extended oil drain intervals according to the manufacturer’s recommendations. It is suitable for EGR engines, with or without particulate filters, and for engines fitted with SCR NOx reduction systems. E6 quality is strongly recommended for engines fitted with particulate filters and is designed for use in combination with low sulphur diesel fuel (max 50 ppm). However, recommendations may differ between engine manufacturers so Driver Manuals and/or Dealers shall be consulted if in doubt.

E7 Stable, stay-in-grade oil providing effective control with respect to piston cleanliness and bore polishing. It further provides excellent wear and turbocharger deposit control, soot handling and lubricant stability. It is recommended for highly rated diesel engines meeting Euro 1, Euro 2, Euro 3 and Euro 4 emission requirements and running under severe conditions, e.g. extended oil drain intervals according to the manufacturer’s recommendations. It is suitable for engines without particulate filters, and for most EGR engines and most engines fitted with SCR NOx reduction systems. However, recommendations may differ between engine manufacturers so Driver Manuals and/or Dealers shall be consulted if in doubt.
This sequence defines the minimum quality level of a product for self-certification to EELQMS and for presentation to ACEA members. Performance parameters other than those covered by the tests shown or more stringent limits may be indicated by individual member companies.

<table>
<thead>
<tr>
<th>REQUIREMENT</th>
<th>TEST METHOD</th>
<th>PROPERTIES</th>
<th>UNIT</th>
<th>LIMITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. LABORATORY TESTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Viscosity grades</td>
<td></td>
<td>SAE J300 Latest active issue</td>
<td>mm²/s</td>
<td>All grades to be stay in grade</td>
</tr>
<tr>
<td>1.2 Shear stability</td>
<td>CEC-L-14-A-93 or ASTM D6278</td>
<td>100°C Viscosity after 30 cycles</td>
<td>Xw-20 stay in grade xW30 ≥ 8.6 xW40 ≥ 12.0</td>
<td>>3.5</td>
</tr>
<tr>
<td>1.3 Viscosity at high temp. & high shear rate</td>
<td>CEC-L-36-A-90 (2nd Edition) (Ravenfield)</td>
<td>Viscosity at 150°C and 10⁶ s⁻¹ shear rate</td>
<td>mPa.s</td>
<td>All grades to be stay in grade</td>
</tr>
<tr>
<td>1.4 Evaporative loss</td>
<td>CEC-L-40-A-93 (Noack)</td>
<td>Max. weight loss after 1 h at 250°C</td>
<td>%</td>
<td>≤ 15</td>
</tr>
<tr>
<td>1.5 Sulphated ash</td>
<td>ASTM D874</td>
<td>% m/m</td>
<td>≤ 1.3 (2)</td>
<td>≤ 1.5 (2)</td>
</tr>
<tr>
<td>1.6 Sulphur (1)</td>
<td>ASTM D5185</td>
<td>% m/m</td>
<td>report</td>
<td></td>
</tr>
<tr>
<td>1.7 Phosphorus (1)</td>
<td>ASTM D5185</td>
<td>% m/m</td>
<td>Report</td>
<td></td>
</tr>
<tr>
<td>1.8 Chlorine</td>
<td>ASTM D6443</td>
<td>% m/m</td>
<td>Report</td>
<td></td>
</tr>
<tr>
<td>1.9 Oil / elastomer compatibility</td>
<td>CEC-L-39-T-96 (see note 3)</td>
<td>Max. variation of characteristics after immersion for 7 days in fresh oil without pre-ageing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hardness D IDC points</td>
<td>-1/+5</td>
<td>-5/+8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tensile strength %</td>
<td>-40/+10</td>
<td>-15/+18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elongation at rupture %</td>
<td>-50/+10</td>
<td>-35/+10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Volume variation %</td>
<td>-1/+5</td>
<td>-7/+5</td>
</tr>
<tr>
<td>1.10 Foaming tendency</td>
<td>ASTM D892 without option A</td>
<td>Tendency - stability ml</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.11 High temperature foaming tendency</td>
<td>ASTM D6082 High temperature foam test</td>
<td>Tendency - stability ml</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This sequence defines the minimum quality level of a product for self-certification to EELQMS and for presentation to ACEA members. Performance parameters other than those covered by the tests shown or more stringent limits may be indicated by individual member companies.

<table>
<thead>
<tr>
<th>REQUIREMENT</th>
<th>TEST METHOD</th>
<th>PROPERTIES</th>
<th>UNIT</th>
<th>LIMITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. ENGINE TESTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 High temperature deposits</td>
<td>CEC-L-88-T-02 (TU5JP-L4)</td>
<td>72 Hour test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ring sticking</td>
<td></td>
<td>Ring sticking (each part)</td>
<td>Merit</td>
<td>≥ 9.0</td>
</tr>
<tr>
<td>Piston varnish</td>
<td></td>
<td>(6 elements, average of 4 pistons)</td>
<td>Merit</td>
<td>≥ RL 216</td>
</tr>
<tr>
<td>Absolute viscosity increase at 40°C</td>
<td></td>
<td>between min and max values during test</td>
<td>mm²/s</td>
<td>≤ RL216</td>
</tr>
<tr>
<td>Oil thickening</td>
<td></td>
<td></td>
<td>kg/l</td>
<td>Report</td>
</tr>
<tr>
<td>2.2 Low temperature sludge</td>
<td>ASTM D6593-00 (Sequence VG)</td>
<td>Under protocol & requirements for API (See Note 4)</td>
<td>merit</td>
<td>≥ 7.8</td>
</tr>
<tr>
<td>Average engine sludge</td>
<td></td>
<td></td>
<td>merit</td>
<td>≥ 8.0</td>
</tr>
<tr>
<td>Rocker cover sludge</td>
<td></td>
<td></td>
<td>merit</td>
<td>≥ 7.5</td>
</tr>
<tr>
<td>Average Piston skirt varnish</td>
<td></td>
<td></td>
<td>merit</td>
<td>≥ 8.9</td>
</tr>
<tr>
<td>Average engine varnish</td>
<td></td>
<td></td>
<td>%</td>
<td>≤ 20</td>
</tr>
<tr>
<td>Comp. ring (hot stuck)</td>
<td></td>
<td></td>
<td></td>
<td>Report</td>
</tr>
<tr>
<td>Oil screen clogging</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3 Valve train scuffing wear</td>
<td>CEC-L-38-A-94 (TU3M)</td>
<td></td>
<td>μm</td>
<td>≤ 10</td>
</tr>
<tr>
<td>Cam wear, average</td>
<td></td>
<td></td>
<td>μm</td>
<td>≤ 15</td>
</tr>
<tr>
<td>Cam wear, max.</td>
<td></td>
<td></td>
<td>merit</td>
<td>≥ 7.5</td>
</tr>
<tr>
<td>Pad merit (Ave. of 8 pads)</td>
<td></td>
<td></td>
<td></td>
<td>≤ 20</td>
</tr>
<tr>
<td>2.4 Black sludge</td>
<td>CEC-L-53-T-95 (M111)</td>
<td>Engine sludge, average</td>
<td>merit</td>
<td>≥ RL 140</td>
</tr>
<tr>
<td>2.5 Fuel economy</td>
<td>CEC-L-54-T-96 (M111)</td>
<td>Fuel economy improvement vs. Reference oil RL191 (15W-40)</td>
<td>%</td>
<td>≥ 2.5</td>
</tr>
<tr>
<td>See Note (5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.6 Ring sticking & Piston</td>
<td>CEC-L-46-T-03 (VW 1.6 TC D)</td>
<td></td>
<td>merit</td>
<td>≥ RL 148</td>
</tr>
<tr>
<td>cleanliness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.7 Medium temperature</td>
<td>CEC-L-56-T-98 (XUD11BTE)</td>
<td>(see note 6)</td>
<td>mm²/s</td>
<td>≤ 0.50 x RL197 result</td>
</tr>
<tr>
<td>dispersivity</td>
<td>or CEC-L-093 (DV4TD)</td>
<td></td>
<td>merit</td>
<td>≥ (RL197 minus 6 pts.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mm²/s</td>
<td>limits under definition</td>
<td>limits under definition</td>
</tr>
</tbody>
</table>
ACEA 2004 EUROPEAN OIL SEQUENCE FOR SERVICE-FILL OILS FOR
GASOLINE and DIESEL ENGINES

Oct. 2004

This sequence defines the minimum quality level of a product for self-certification to EELQMS and for presentation to ACEA members. Performance parameters other than those covered by the tests shown or more stringent limits may be indicated by individual member companies.

<table>
<thead>
<tr>
<th>REQUIREMENT</th>
<th>TEST METHOD</th>
<th>PROPERTIES</th>
<th>UNIT</th>
<th>LIMITS</th>
</tr>
</thead>
</table>

2. ENGINE TESTS CONTINUED

2.8 Wear, Viscosity stability & Oil consumption

<table>
<thead>
<tr>
<th>Test Method</th>
<th>Properties</th>
<th>Unit</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEC-L-51-A-98 (OM602A)</td>
<td>Cam wear. Average (new tappet)</td>
<td>µm</td>
<td>≤ 50.0</td>
</tr>
<tr>
<td></td>
<td>Viscosity increase at 40°C</td>
<td>%</td>
<td>≤ 90</td>
</tr>
<tr>
<td></td>
<td>Bore polishing</td>
<td>%</td>
<td>≤ 7.0</td>
</tr>
<tr>
<td></td>
<td>Cylinder wear. Average</td>
<td>µm</td>
<td>≤ 20.0</td>
</tr>
<tr>
<td></td>
<td>Oil consumption</td>
<td>kg/test</td>
<td>≤ 10.0</td>
</tr>
</tbody>
</table>

2.9 DI diesel Piston cleanliness & Ring sticking

<table>
<thead>
<tr>
<th>Test Method</th>
<th>Properties</th>
<th>Unit</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEC-L-78-T-99 (VW DI)</td>
<td>Piston cleanliness</td>
<td>merit</td>
<td>≥ RL206 minus 3 points</td>
</tr>
<tr>
<td></td>
<td>Ring sticking (Rings 1 & 2)</td>
<td></td>
<td>≤ 1.2</td>
</tr>
<tr>
<td></td>
<td>Average of all 8 rings</td>
<td></td>
<td>≤ 2.5</td>
</tr>
<tr>
<td></td>
<td>Max. for any 1st ring</td>
<td>ASF</td>
<td>≤ 0.0</td>
</tr>
<tr>
<td></td>
<td>Max. for any 2nd ring</td>
<td>ASF</td>
<td></td>
</tr>
</tbody>
</table>

(1) The internal standard method has to be used.
(2) Maximum limits, Values take into account method and production’s tolerances
(3) Use either complete DaimlerChrysler requirements (VDA 675301, 7 days +/- 2h, 4 materials (NBR: NBR34 DIN 53538 T3 (100 °C +/- 2°C); FPM: AK6 (150 °C +/- 2°C); ACM: E7503 (150 °C +/- 2°C); AEM: D 8948/200.1 (150 °C +/- 2°C)) + RE3, or complete requirements according to 1.10 above + DC requirements for AEM
(4) The limits shown are based upon those applied in U.S. market requirements. ACEA will continuously review the situation to ensure that these limits are appropriate for European vehicles and lubricants.
(5) ACEA considers the CEC L-54-T-96 test the only valid comparator against which claims of lubricant fuel economy improvement should be made.
(6) XUD 11 BTE can be used instead of DV4 (as long as it's available)
This sequence defines the minimum quality level of a product for self-certification to EELQMS and for presentation to ACEA members. Performance parameters other than those covered by the tests shown or more stringent limits may be indicated by individual member companies.

<table>
<thead>
<tr>
<th>REQUIREMENT</th>
<th>TEST METHOD</th>
<th>PROPERTIES</th>
<th>UNIT</th>
<th>LIMITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SAE J300 Latest active issue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Viscosity grades</td>
<td>CEC-L-14-A-93 or ASTM D6278</td>
<td>100°C Viscosity after 30 cycles</td>
<td>mm²/s</td>
<td></td>
</tr>
<tr>
<td>1.2 Shear stability</td>
<td>CEC-L-36-A-90 (2nd Edition)</td>
<td>Viscosity at 150°C and 10⁶ s⁻¹ shear rate</td>
<td>mPa.s</td>
<td>≥2.9</td>
</tr>
<tr>
<td>1.3 Viscosity at high temp. & high shear rate</td>
<td>CEC-L-40-A-93 (Noack)</td>
<td>Max. weight loss after 1 h at 250°C</td>
<td>%</td>
<td>≤13</td>
</tr>
<tr>
<td>1.4 Evaporative loss</td>
<td>CEC-L-40-A-93 (Noack)</td>
<td></td>
<td>%</td>
<td>≤13</td>
</tr>
<tr>
<td>1.5 Sulphur (1)</td>
<td>ASTM D5185</td>
<td>Max. variation of characteristics after immersion for 7 days in fresh oil without pre-ageing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6 Phosphorus (1)</td>
<td>ASTM D5185</td>
<td>Max. variation of characteristics after immersion for 7 days in fresh oil without pre-ageing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7 Sulphated ash</td>
<td>ASTM D874</td>
<td>Max. variation of characteristics after immersion for 7 days in fresh oil without pre-ageing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8 Chlorine</td>
<td>ASTM D6443</td>
<td>Max. variation of characteristics after immersion for 7 days in fresh oil without pre-ageing</td>
<td>ppm</td>
<td></td>
</tr>
<tr>
<td>1.9 TBN</td>
<td>ASTM D 2896</td>
<td>Max. variation of characteristics after immersion for 7 days in fresh oil without pre-ageing</td>
<td>mg KOH/g</td>
<td>≥6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max. variation of characteristics after immersion for 7 days in fresh oil without pre-ageing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.10 Oil / elastomer compatibility</td>
<td>CEC-L-39-T-96 (see note 3)</td>
<td>Max. variation of characteristics after immersion for 7 days in fresh oil without pre-ageing</td>
<td>points</td>
<td>RE1 -1/+5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max. variation of characteristics after immersion for 7 days in fresh oil without pre-ageing</td>
<td>%</td>
<td>RE2-99 -5/+8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max. variation of characteristics after immersion for 7 days in fresh oil without pre-ageing</td>
<td>%</td>
<td>RE3-04 -22 max</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max. variation of characteristics after immersion for 7 days in fresh oil without pre-ageing</td>
<td>%</td>
<td>RE4 -5/+5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max. variation of characteristics after immersion for 7 days in fresh oil without pre-ageing</td>
<td>%</td>
<td>AEM (VAMA C) As per Daimler Chrysl er</td>
</tr>
<tr>
<td>1.11 Foaming tendency</td>
<td>ASTM D892 without option A</td>
<td>Tendency - stability</td>
<td>ml</td>
<td>Sequence I (240°C) 10 - nil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tendency - stability</td>
<td>ml</td>
<td>Sequence II (940°C) 50 - nil</td>
</tr>
<tr>
<td>1.12 High temperature foaming tendency</td>
<td>ASTM D6082 High temperature foam test</td>
<td>Tendency - stability</td>
<td>ml</td>
<td>Sequence III (240°C) 10 - nil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tendency - stability</td>
<td>ml</td>
<td>Sequence IV (1500°C) 100 - nil</td>
</tr>
</tbody>
</table>

NOTE: The following sections apply to all sequences
This sequence defines the minimum quality level of a product for self-certification to EELQMS and for presentation to ACEA members. Performance parameters other than those covered by the tests shown or more stringent limits may be indicated by individual member companies.

<table>
<thead>
<tr>
<th>REQUIREMENT</th>
<th>TEST METHOD</th>
<th>PROPERTIES</th>
<th>UNIT</th>
<th>C1-04</th>
<th>C2-04</th>
<th>C3-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. ENGINE TESTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 High temperature deposits</td>
<td>CECL-88-T-02 (TU5JP-L4)</td>
<td>Ring sticking (each part)</td>
<td>Merit</td>
<td>≥ 9.0</td>
<td>≥ 9.0</td>
<td>≥ 9.0</td>
</tr>
<tr>
<td></td>
<td>72 Hour test</td>
<td>Piston varnish (6 elements, average of 4 pistons)</td>
<td>Merit</td>
<td>≥ 9.0</td>
<td>≥ 9.0</td>
<td>≥ 9.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Absolute viscosity increase at 40°C between min and max values during test</td>
<td>mm²/s</td>
<td>≤ 0.8 x RL216</td>
<td>≤ 0.8 x RL216</td>
<td>≤ 0.8 x RL216</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oil consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2 Low temperature sludge</td>
<td>ASTM D6593-00 (Sequence VG)</td>
<td>Average engine sludge</td>
<td>merit</td>
<td>≥ 7.8</td>
<td>≥ 7.8</td>
<td>≥ 7.8</td>
</tr>
<tr>
<td></td>
<td>Under protocol & requirements for API (See Note 4)</td>
<td>Rocker cover sludge</td>
<td>merit</td>
<td>≥ 8.0</td>
<td>≥ 8.0</td>
<td>≥ 8.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Average Piston skirt varnish</td>
<td>merit</td>
<td>≥ 7.5</td>
<td>≥ 7.5</td>
<td>≥ 7.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Average engine varnish</td>
<td>merit</td>
<td>≥ 8.9</td>
<td>≥ 8.9</td>
<td>≥ 8.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comp. ring (hot stuck)</td>
<td>%</td>
<td>≤ 20</td>
<td>≤ 20</td>
<td>≤ 20</td>
</tr>
<tr>
<td>2.3 Valve train scuffing wear</td>
<td>CEC-L-38-A-94 (TU3M)</td>
<td>Cam wear, average</td>
<td>µm</td>
<td>≤ 10</td>
<td>≤ 10</td>
<td>≤ 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cam wear, max.</td>
<td>µm</td>
<td>≤ 15</td>
<td>≤ 15</td>
<td>≤ 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pad merit (Ave. of 8 pads)</td>
<td>merit</td>
<td>≥ 7.5</td>
<td>≥ 7.5</td>
<td>≥ 7.5</td>
</tr>
<tr>
<td>2.4 Black sludge</td>
<td>CEC-L-53-T-95 (M111)</td>
<td>Engine sludge, average</td>
<td>merit</td>
<td>≥ RL140</td>
<td>≥ RL140</td>
<td>≥ RL140</td>
</tr>
<tr>
<td>2.5 Fuel economy</td>
<td>CEC-L-54-T-96 (M111)</td>
<td>Fuel economy improvement vs. Reference oil RL191 (15W-40)</td>
<td>%</td>
<td>≥ 2.5</td>
<td>≥ 2.5</td>
<td>≥ 1.0 (for Xw30 grades)</td>
</tr>
<tr>
<td>See Note (5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.6 Medium temperature dispersivity</td>
<td>CEC-L-56-T-98 (XUD11BTE) (see note 6)</td>
<td>Absolute viscosity increase at 100°C and 3% soot (measurement with CEC L-83-A-97 method)</td>
<td>mm²/s</td>
<td>≤ 0.50 x RL197 result</td>
<td>≤ 0.50 x RL197 result</td>
<td>≤ 0.50 x RL197 result</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Piston merit (5 elements, average for 4 pistons)</td>
<td>merit</td>
<td>≥ RL197</td>
<td>≥ RL197</td>
<td>≥ RL197</td>
</tr>
<tr>
<td></td>
<td>or CEC-L-093 (DV4TD)</td>
<td>Absolute viscosity increase at 100°C and 6 % soot</td>
<td>mm²/s</td>
<td>limits under definition</td>
<td>limits under definition</td>
<td>limits under definition</td>
</tr>
<tr>
<td>2.7 DI diesel</td>
<td></td>
<td>Piston cleanliness</td>
<td>merit</td>
<td>≥ RL206</td>
<td>≥ RL206</td>
<td>≥ RL206 - 3 points</td>
</tr>
<tr>
<td>Piston cleanliness & Ring sticking</td>
<td>CEC-L-78-T-99 (VW DI)</td>
<td>Ring sticking (Rings 1 & 2)</td>
<td>ASF</td>
<td>≤ 1.2</td>
<td>≤ 1.2</td>
<td>≤ 1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Average of all 8 rings</td>
<td>ASF</td>
<td>≤ 2.5</td>
<td>≤ 2.5</td>
<td>≤ 2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max. for any 1st ring</td>
<td>ASF</td>
<td>≤ 0.0</td>
<td>≤ 0.0</td>
<td>≤ 0.0</td>
</tr>
</tbody>
</table>
This sequence defines the minimum quality level of a product for self-certification to EELQMS and for presentation to ACEA members. Performance parameters other than those covered by the tests shown or more stringent limits may be indicated by individual member companies.

REQUIREMENT

<table>
<thead>
<tr>
<th>TEST METHOD</th>
<th>PROPERTIES</th>
<th>UNIT</th>
<th>C1-04</th>
<th>C2-04</th>
<th>C3-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEC-L-51-A-98 (OM602A)</td>
<td>Cam wear. Average (new tappet)</td>
<td>µm</td>
<td>≤ 50.0</td>
<td>≤ 50.0</td>
<td>≤ 45.0</td>
</tr>
<tr>
<td></td>
<td>Viscosity increase at 40°C</td>
<td>%</td>
<td>≤ 90</td>
<td>≤ 90</td>
<td>≤ 70.0</td>
</tr>
<tr>
<td></td>
<td>Bore polishing</td>
<td>%</td>
<td>≤ 7.0</td>
<td>≤ 7.0</td>
<td>≤ 4.5</td>
</tr>
<tr>
<td></td>
<td>Cylinder wear. Average</td>
<td>µm</td>
<td>≤ 20.0</td>
<td>≤ 20.0</td>
<td>≤ 15.0</td>
</tr>
<tr>
<td></td>
<td>Oil consumption</td>
<td>kg/test</td>
<td>≤ 10.0</td>
<td>≤ 10.0</td>
<td>≤ 10</td>
</tr>
</tbody>
</table>

(1) The internal standard method has to be used.
(2) Maximum limits, Values take into account method and production’s tolerances
(3) Use either complete DaimlerChrysler requirements (VDA 675301, 7 days +/- 2h, 4 materials (NBR: NBR34 DIN 53538 T3 (100 °C +/- 2°C); FPM: AK6 (150 °C +/- 2°C); ACM: E7503 (150 °C +/- 2°C); AEM: D 8948/200.1 (150 °C +/- 2°C)) + RE3, or complete requirements according to 1.10 above + DC requirements for AEM
(4) The limits shown are based upon those applied in U.S. market requirements. ACEA will continuously review the situation to ensure that these limits are appropriate for European vehicles and lubricants.
(5) ACEA considers the CEC L-54-T-96 test the only valid comparator against which claims of lubricant fuel economy improvement should be made.
(6) XUD 11 BTE can be used instead of DV4 (as long as it’s available)
This sequence defines the minimum quality level of a product for self-certification to EELQMS and for presentation to ACEA members. Performance parameters other than those covered by the tests shown or more stringent limits may be indicated by individual member companies.

1. LABORATORY TESTS

1.1 Viscosity

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Test Method</th>
<th>Properties</th>
<th>Unit</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SAE J300</td>
<td>No restriction except as defined by shear stability and HT/HS requirements. Manufacturers may indicate specific viscosity requirements related to ambient temperature.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.2 Shear stability

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Test Method</th>
<th>Properties</th>
<th>Unit</th>
<th>Limits</th>
</tr>
</thead>
</table>
| | CEC-L-14-A-93 or ASTM D6278 | Viscosity after 30 cycles measured at 100°C. | mm²/s | xW-30 ≥ 9.0
xW-40 ≥ 12.0
xW-50 ≥ 15.0
mono grades no req. |
| | ASTM D6278 | Viscosity after 90 cycles measured at 100°C | mm²/s | Stay in grade |

1.3 Viscosity

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Test Method</th>
<th>Properties</th>
<th>Unit</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CEC-L-36-A-90 (2nd Edition) (Ravenfield)</td>
<td>Viscosity at 150°C and 10⁶ s⁻¹ Shear rate</td>
<td>mPa.s</td>
<td>³ 3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.4 Evaporative Loss

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Test Method</th>
<th>Properties</th>
<th>Unit</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CEC-L-40-A-93 (Noack)</td>
<td>Max. weight loss after 1 h at 250°C</td>
<td>%</td>
<td>³ 13</td>
</tr>
</tbody>
</table>

1.5 Sulphated Ash

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Test Method</th>
<th>Properties</th>
<th>Unit</th>
<th>Limits</th>
</tr>
</thead>
</table>
| | ASTM D874 | % m/m | | ³ 2.0
³ 1.0
³ 2.0 |

1.6 Phosphorus

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Test Method</th>
<th>Properties</th>
<th>Unit</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ASTM D5185¹</td>
<td>% m/m</td>
<td></td>
<td>³ 0.08</td>
</tr>
</tbody>
</table>

1.7 Sulphur

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Test Method</th>
<th>Properties</th>
<th>Unit</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ASTM D5185¹</td>
<td>% m/m</td>
<td></td>
<td>³ 0.3</td>
</tr>
</tbody>
</table>

1.8 Oil Elastomer Compatibility

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Test Method</th>
<th>Properties</th>
<th>Unit</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CEC-L-39-T-96</td>
<td>Max. variation of characteristics after immersion for 7 days in fresh oil without pre-ageing</td>
<td>points</td>
<td>RE1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hardness DiDC</td>
<td>%</td>
<td>-1/+5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tensile strength</td>
<td>%</td>
<td>-50/+10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elongation rupture</td>
<td>%</td>
<td>-60/+10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Volume variation</td>
<td>%</td>
<td>-1/+5</td>
</tr>
</tbody>
</table>

1.9 Foaming Tendency

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Test Method</th>
<th>Properties</th>
<th>Unit</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ASTM D892 without option A</td>
<td>Tendency – stability</td>
<td>ml</td>
<td>Sequence I (24°C) 10 – nil</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ml</td>
<td>Sequence II (94°C) 50 – nil</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ml</td>
<td>Sequence III (24°C) 10 – nil</td>
</tr>
</tbody>
</table>

1.10 High temperature foaming tendency

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Test Method</th>
<th>Properties</th>
<th>Unit</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ASTM D6082</td>
<td>Tendency - stability</td>
<td>ml</td>
<td>Sequence IV (150°C) 200-50</td>
</tr>
</tbody>
</table>

1.11 Oxidation

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Test Method</th>
<th>Properties</th>
<th>Unit</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CEC-L-85-T-99 (PDSC)</td>
<td>Oxidation induction time</td>
<td>min</td>
<td>³ 35</td>
</tr>
</tbody>
</table>

1.12 Corrosion

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Test Method</th>
<th>Properties</th>
<th>Unit</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ASTM D 6594</td>
<td>Lead increase</td>
<td>ppm</td>
<td>³ 100</td>
</tr>
</tbody>
</table>
This sequence defines the minimum quality level of a product for self-certification to EELQMS and for presentation to ACEA members. Performance parameters other than those covered by the tests shown or more stringent limits may be indicated by individual member companies.

<table>
<thead>
<tr>
<th>REQUIREMENTS</th>
<th>TEST METHOD</th>
<th>PROPERTIES</th>
<th>UNIT</th>
<th>LIMITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. ENGINE TESTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 Bore polishing / Piston cleanliness</td>
<td>CEC L-42-T-99 (OM364LA)</td>
<td>Bore polishing</td>
<td>%</td>
<td>≤ 3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Piston cleanliness</td>
<td>µm</td>
<td>≥ 40.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Average Cylinder wear</td>
<td>%</td>
<td>≥ 4.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sludge</td>
<td>µm</td>
<td>≥ 9.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oil consumption</td>
<td>kg/test</td>
<td>≤ 16.0</td>
</tr>
<tr>
<td>2.2 Wear</td>
<td>CEC L-51-A-97 (OM602A)</td>
<td>Cam wear</td>
<td>µm</td>
<td>≤ 50.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viscosity increase at 40°C</td>
<td>%</td>
<td>≤ 90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bore polishing</td>
<td>%</td>
<td>≤ 7.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cylinder wear</td>
<td>µm</td>
<td>≤ 20.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oil consumption</td>
<td>kg/test</td>
<td>≤ 10</td>
</tr>
<tr>
<td>2.3 Soot in oil</td>
<td>ASTM D 5967 (Mack T-8E)</td>
<td>Test duration:</td>
<td>Hours</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Relative viscosity at</td>
<td>4.8% soot</td>
<td>≤ 2.1/2.2/2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 test/2 test/3 test average</td>
<td>3.8% soot</td>
<td>≤ 2.1/2.2/2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viscosity increase at</td>
<td>≤ 11.5/12.5/13.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 test/2 test/3 test average</td>
<td>0</td>
<td>≤ 138</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Filter plugging, Diff. pressure</td>
<td>g/kWh</td>
<td>≤ 0.304</td>
</tr>
<tr>
<td>2.4 Bore polishing / Piston Cleanliness Turbocharger deposits</td>
<td>CEC L-52-T-97 (OM441LA)</td>
<td>Bore polishing</td>
<td>%</td>
<td>≤ 2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Piston Cleanliness</td>
<td>%</td>
<td>≥ 40.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boost pressure loss at 400 hrs</td>
<td>%</td>
<td>≤ 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oil consumption</td>
<td>kg/test</td>
<td>≤ 40</td>
</tr>
<tr>
<td>2.5. Soot induced wear</td>
<td>Cummins M11</td>
<td>Rocker pad average weight loss at 4.5% soot</td>
<td>mg</td>
<td>≤ 6.5/7.5/8.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 test/2 test/3 test average</td>
<td>kPa</td>
<td>≤ 79/93/100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oil filter diff.press @ EOT</td>
<td></td>
<td>≥ 8.7/8.6/8.5</td>
</tr>
<tr>
<td>2.6. Wear (liner-ring-bearings)</td>
<td>Mack T10</td>
<td>Merit</td>
<td></td>
<td>≥ 1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Avg. liner wear</td>
<td>µm</td>
<td>≤ 32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Average top ring weight loss</td>
<td>mg</td>
<td>≤ 158</td>
</tr>
<tr>
<td></td>
<td></td>
<td>End of test lead</td>
<td>ppm</td>
<td>≤ 35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Delta lead 250-300 hrs</td>
<td>ppm</td>
<td>≤ 14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oil consumption (Phase II)</td>
<td>g/hr</td>
<td>≤ 65</td>
</tr>
</tbody>
</table>

(1) The internal standard method has to be used.

(2) Use either the most recent complete Daimler-Chrysler requirements (VDA 675301, 7 days, 4 materials (NBR: NBR34 DIN 53538 T3 (100 ºC); FPM: AK6 (150 ºC); ACM: E7503 (150 ºC); AEM: D 8948/200.1 (150 ºC)) + RE3 according to requirement 1.8 above, or complete requirements according to 1.8 above + DC requirements for AEM.
(3) Results from a CEC L-52-T-97 (OM441LA) test as part of a DaimlerChrysler sheet 228.1 approval can be used as an alternative. Only tests according to CEC L-42-T-99 are acceptable.

(4) The requirements for these characteristics may be met with a passing Cummins M11 EGR test in an API CI-4 qualification. These requirements may be replaced by the Cummins ISM test once test development is completed. Limits will be set at an equivalent performance level.

(5) Results obtained using Mack T10-ULSD according to ASTM D 6987, are allowed (subject to Mack T10-ULSD test method being approved by ASTM).